Christopher Balzer

he/him · balzer@ucsb.edu · chrisbalzer.github.io/

Education

Ph.D. and M.S.,	California Institute of Technology 2018–2023
Chemical	Subject Minor: Applied and Computational Mathematics
Engineering	Thesis: "Polyelectrolytes near Solid Surfaces"
	Advisor: Prof. Zhen-Gang Wang \cdot DOE CSGF Fellow \cdot GPA: 4.0
M.Phil,	University of Cambridge 2017-2018
Chemical	Thesis: "Computational Analysis of Metal-Organic Frameworks for Separation of CO/N2"
Engineering	Advisor: Prof. David Fairen-Jimenez
B.S.E,	Barrett, the Honors College, at Arizona State University 2014–2017
Chemical	Thesis: "A Model of Nanoparticle Dispersion in Electrospun Nanofibers"
Engineering	Advisor: Prof. Bin Mu • GPA: 4.0

Selected Awards and Honors

National	Frank J. Padden Jr. Award Finalist (2023)
	DOE Computational Science Graduate Fellowship (2019)
	Churchill Scholarship (2017)
	Goldwater Scholarship (2016)
	Society of Chemical Industry (SCI) Scholar (2016)
Caltech	Jacobs Translational Medicine Fellowship (2018)
Arizona State	Outstanding Undergraduate Thesis Award (2017)
University	NSF Collaborative Interdisciplinary Research Community Scholarship (2015,2016)
	Fulton Undergraduate Research Initiative Grant (2015,2016)

Publications [†] denotes equal contribution

- (16) C. Balzer, Z.-G. Wang, "Electroresponse of Weak Polyelectrolyte Brushes", Eur. Phys. J. E, 46, 82 (2023)
- (15) S. Varner[†], C. Balzer[†], Z.-G. Wang, "Entropic Origin of Ionic Interactions in Polar Solvents", J. Phys. Chem. B, 127, 4328–4337 (2023)
- (14) **C. Balzer**, A. L. Frischknecht, "Explicit Polarization in Coarse-Grained Simulations of Ionomer Melts", *Macromolecules*, 55, 9980–9989 (2022)
- (13) **C. Balzer**, P. Zhang, Z.-G. Wang, "Wetting Behavior of Polyelectrolyte Complex Coacervates on Solid Surfaces", *Soft Matter*, 18, 6326–6339 (2022)

- (12) D. Bruch[†], C. Balzer[†], Z.-G. Wang, "Thermodynamics of electrolyte solutions near charged surfaces: Constant surface charge vs constant surface potential", *Journal of Chem. Phys.*, 156, 174704 (2022)
- (11) A. S. Ylitalo, C. Balzer, P. Zhang, Z.-G. Wang, "Electrostatic Correlations and Temperature-Dependent Dielectric Constant Can Model LCST in Polyelectrolyte Complex Coacervation", *Macromolecules*, 54, 11326–11337 (2021)
- N. Rampal, A. Ajenifuja, A. Tao, C. Balzer, M. S. Cummings, A. Evans, R. Bueno-Perez, D. J. Law, L. W. Bolton, C. Petit, F. Siperstein, M. P. Attfield, M. Jobson, P. Z. Moghadam, D. Fairen-Jimenez, "The development of a comprehensive toolbox based on multi-level, high-throughput screening of MOFS for CO/N2 separations", *Chemical Science*, 12, 12068–12081 (2021)
- (9) C. Balzer[†], L. Qing[†], Z.-G. Wang, "Preferential Ion Adsorption in Blue Energy Applications", ACS Sustainable Chem. Eng., 9, 9230–9239 (2021)
- (8) C. Balzer[†], J. Jiang[†], R. L. Marson, V. V. Ginzburg, Z.-G. Wang, "Nonelectrostatic Adsorption of Polyelectrolytes and Mediated Interactions between Solid Surfaces", *Langmuir*, 37, 5483–5493 (2021)
- (7) C. Balzer, R. Oktavian, M. Zandi, D. Fairen-Jimenez, P.Z. Moghadam, "Wiz: A web-based tool for interactive visualization of big data", *Patterns*, 1, 100107 (2020)
- V. Rana, A. Tabet, J. Vigil, C. J. Balzer, A. Narkevicius, J. Finlay, C. Hallou, D. Rowitch,
 H. Bulstrode, O. Scherman, "Cucurbit[8]uril-Derived Graphene Hydrogels", ACS Macro Letters, 8, 1629–1634 (2019)
- (5) C. Balzer, M. Armstrong, B. Shan, Y. Huang, J. Liu, and B. Mu, "Modeling Nanoparticle Dispersion in Electrospun Nanofibers", *Langmuir*, 34, 1340–1346 (2018)
- (4) M. Armstrong. C. Balzer, B. Shan and B. Mu, "Influence of particle size and loading on particle accessibility in electrospun poly(ethylene oxide) and ZIF-8 composite fibers: experiments and theory", *Langmuir*, 33, 9066–9072 (2017)
- (3) C. J. Balzer, M. R. Armstrong, B. Shan and B. Mu, "Composite MOF Mixture as Volatile Organic Compound Sensor - A New Approach to LMOF Sensors", *Materials Letters*, 190, 33–36 (2017)
- (2) M. R. Armstrong, S. Senthilnathan, C. J. Balzer, B. Shan and B. Mu, "Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis", *Ultrason. Sonochem.*, 34, 365–370 (2017)
- M. R. Armstrong, K.Y. Yuriar Arredondo, C.-Y. Liu, J. E. Stevens, A. Mayhob, B. Shan, S. Senthilnathan, C. J. Balzer, and B. Mu, "UiO-66 MOF and poly (vinyl cinnamate) nanofiber composite membranes synthesized by a facile three-stage process", *Ind. Eng. Chem. Res.*, 54, 12386–12392 (2015)

Research experience

UC Santa	Field-theoretic Simulations of Classical and Quantum Fluids 2023 – Present
Barbara	Advisor: Prof. Glenn Fredrickson Developing computational and field-theoretic methods to study complex classical and
	quantum fluids. Current focus is the phase behavior of reversibly associating networks using coherent states field theory.
Caltech	Simulation and Theory of Inhomogeneous Polyelectrolytes 2018–2023 Advisor: Prof. Zhen-Gang Wang
	Developed thermodynamics of polyelectrolyte solutions and interfacial phenomena, es- pecially near solid surfaces. Approaches range from field-based self consistent theory or classical density functional theory to coarse-grained molecular dynamics simulations.
Sandia National	Coarse-Grained Simulation of Ionomer Melts Summer 2021
Laboratories	As part of DOE Computational Science Graduate Fellowship practicum Advisor: Dr. Amalie Frischknecht
	Created a molecular dynamics simulation methodology to incorporate polarization (Drude oscillators) into a Kremer–Grest coarse-grained polymer model to study ion transport in ionomer melts.
University of	Multi-scale Simulations for Gas Separations 2017–2018
Cambridge	Advisor: Prof. David Fairen-Jimenez
	Designed and conducted high-throughput molecular and process simulations to screen metal-organic framework materials for separation of CO and N ₂ . Developed transferable, polarizable forcefields used in grand canonical Monte Carlo simulations for MOF subset.
W. L. Gore &	Fluoropolymer Adhesives 2017
Associates	Medical Products Division • Surface Engineering Group Mentors: Dr. Yuling Wang, Dr. Lijun Zhou
	Developed a novel test method to measure adhesive strength of fluoropolymer adhesives to Nitinol wires.
Arizona State University	Metal-Organic Frameworks for Gas Separation and Sensing 2014–2017 Advisor: Prof. Bin Mu
	Synthesized MOFs via solvothermal and sonochemical synthesis routes. Characterized using FT-IR, fluorimetry, XRD, and gas sorption measurements. Embedded MOF materials into polymer nanofibers via electrospinning for mixed-matrix membranes.
	Contributed Presentations
(13)	Center for Polymers and Organic Solids (UCSB), Oral (invited), "Theory of Sequenced Supramolecular Polymers", March 2024

(12) Complex Fluid Design Consortium (UCSB), Oral, "Sequence Effects in the Thermodynamics of Supramolecular Polymers", January 2024

- (11) DOE Computational Science Graduate Fellowship Annual Review, Oral, "Unraveling Electrostatic Interactions in Polar Solvents", July 2023
- (10) APS March Meeting 2023, Oral (invited), "Electrostatic Manipulation of Weak Polyelectrolyte Brushes"
- (9) AIChE Annual Meeting, Oral, "Complex Coacervation in Polyelectrolyte Brushes", November 2022
- (8) Polymer Physics Gordon Research Conference, Poster, "Explicit Polarization in Coarse-Grained Simulations of Ionomer Melts", July 2022
- (7) Polymer Physics Gordon Research Seminar, Oral (invited), "Explicit Polarization in Coarse-Grained Simulations of Ionomer Melts", July 2022
- (6) DOE Computational Science Graduate Fellowship Annual Review, Poster, "Structure and Dynamics of Ion Aggregates in Simulations of Ionomer Melts", July 2022
- (5) APS March Meeting 2022, Oral, "Wetting and Contact Angles of Complex Coacervates"
- (4) APS March Meeting 2021, Oral, "Wetting Behavior of Complex Coacervates"
- (3) AIChE Annual Meeting, Virtual, Oral (invited session), "Interactions between Surfaces Mediated By Polyelectrolyte Dispersants", November 2020
- (2) AIChE Annual Student Conference, Poster, "Composite MOF Mixture as Volatile Organic Compound Sensor", November 2016
- (1) AIChE Rocky Mountain Regional Student Meeting, Poster, "Kinetic Study of Sonofragmentation of Metal-Organic Frameworks", April 2016

Teaching experience

Spring 2021Teaching Assistant, CHE 148: Polymer Physics (Caltech)Graduate level introduction to polymer physics and polymer research topics. Advised
students on assignments and research proposals for the end of term project. (12 hrs/wk)

2018–2019 RISE Tutor (Caltech)

Volunteer tutoring of high school students in Pasadena area. (3 hrs/wk)

Spring 2017Teaching Assistant, CHE 442: Chemical Reactor Design (Arizona State University)Held office hours, led review sessions, created tutorials for numerical tools (MATLAB and
Python), developed example problems related to design/kinetics of chemical reactors. (9
hrs/wk)

2015-2017Undergraduate Tutor (Arizona State University)Tutoring university level math, chemistry, physics, and relevant engineering courses at

university tutoring center (25 hrs/wk)